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An analytical expression of hydrodynamic potential inside an evaporating sessile drop with pinned contact
line is found. The problem is considered for a hemispherical dropswith the contact angle of 90°d at the very
early stages of the evaporation process when the shape of the drop is still a hemisphere and the evaporation
field is uniform. The capillary flow carries a fluid from the drop apex to the contact line. Comparison with the
published calculations performed using lubrication approximationsvery thin dropd suggests that qualitative
picture of the capillary flow is insensitive to the ratio of initial drop height to the drop radius.
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I. INTRODUCTION

The desiccated sessile drops attract the attention because
of different reasons and possible applications. If a drop of
pure liquid dries on a smooth substrate, then the base of the
drop shrinks but the contact angle remains fixed. Under
evaporation, a drop of colloidal suspension or solution hav-
ing a strongly anchored three-phase line keeps a spherical-
cap shape with a constant base. The contact angle decreases
with time, and the height in each point of the profile de-
creases. To satisfy the anchoring condition, a flow of liquid
has to occur inside the drop. An outward flow in a drying
drop is produced when the contact line is pinned so that
liquid that is removed by evaporation from the edge of the
drop must be replenished by a flow of liquid from the interior
f1–3g. This flow is capable of transferring 100% of the solute
to the contact line and thus accounts for the strong perimeter
concentration of many stains. Ring formation in an evaporat-
ing sessile drop is a hydrodynamic process in which solids
dispersed in the drop are advected to the contact line. After
all the liquid evaporates, a ring-shaped deposit is left on the
substrate that contains almost all the solute. Perhaps every-
one is familar with the dense, ringlike deposit along the pe-
rimeter of a dried drop of coffee, tea, milk, or juice on a
table.

Exploratory experimentsf3g using a variety of carrier flu-
ids, solutes, and substrates indicated that preferential deposi-
tion at the contact line is insensitive to a wide range of ex-
perimental conditions. Ringlike deposits were observed
whenever the surface was partially wet by the fluid irrespec-
tive of the chemical composition of the substrate. Different
substrates were investigatedsmetal, polyethylene, roughened
Teflon, freshly cleaved mica, ceramic, and silicond. Rings
were found in big dropss15 cmd and in small dropss1 mmd.
They were found with aqueous and nonaqueoussacetone,
methanol, toluene, and ethanold solvents. They were found
with solutes ranging in size from the molecularssugar and
dye moleculesd to the colloidals10 mm polystyrene micro-
spheresd and with solute volume fractions ranging from 10−6

to 10−1. Likewise, environmental conditions, such as tem-

perature, humidity, and pressure, could be extensively varied
without affecting the ring. Effects due to solute diffusion,
gravity, electrostatic fields, and surface tension forces are
negligible in ring formation.

The vertically averaged radial flow of the fluid in a des-
iccated sessile drop was calculated inf1g. The conservation
of fluid was utilized. A constant evaporation rate all over
drop free surface was assumed.

For the case where the limiting rate is the diffusion of the
liquid vapor, the evaporation of the drop rapidly attains a
steady state so that the diffusion equation reduces to
Laplace’s equationf3g. In this case the evaporation rate is
larger near the contact line and the resulting ringlike deposit
is more concentrated at the edge. The modelsf1,3g deal with
the vertically averaged radial flow of the fluid.

In Ref. f4g, very thin droplets have been examinedsh0
!R, whereR is the droplet radius andh0 is the initial droplet
heightd. In this regime, the lubrication approximation can be
applied to simplify the governing equations. The streamlines
and velocity field were obtained inf4g for nonuniform
evaporation of liquid.

Recently, the buckling instability was investigated during
the drying of sessile drops of colloidal suspensions or of
polymer solutionsf5–7g. Drying of a sessile drop of a com-
plex liquid can lead to intriguing complex shapes. Under
solvent evaporation, disperse particles or polymers accumu-
late near the vapor-drop interface. The outer layer of the drop
is more concentrated in the polymer and may display a gel or
glassy transition and, hence, may form a permeable rigid
gelled or glassy skin. This skin behaves like an elastic shell,
although it does not block the evaporation. This gelled or
glassy skin will, thus, bend as the volume it encloses de-
creases, leading to large surface distortions.

The processes of skin formation are not the scope of this
brief communication. Nevertheless, knowledge of the veloc-
ity field inside an evaporating sessile drop is a necessary
background to describe the colloidal particle transfer or sol-
ute diffusion and skin formation. In Ref.f5g, the authors
experimentally investigated the conditions under which drop
surface buckling occurs and their dependence on the drying
rate and contact angle. The contact angle varies in a wide
range up to 80°. Obviously, lubrication approximation cannot
work in the case of such large contact angles.*Electronic address: tarasev@astranet.ru
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Section II describes how to obtain the space distribution
of the fluid flow in the quite different approximation of the
very thick drop.

II. MODEL AND RESULTS

Likewise Refs.f1–3g let us suppose that the shape of the
drop is a spherical cap. It means that the drop is small, and a
spherical cap shape induced by surface tensionsBond num-
ber is smaller than one: Bo=gsr−r fdd2s−1!1, whereg is
gravitational acceleration,r is drop density,r f is surrounding
medium density,s is surface tension,d is drop diameterd.
Let us consider an extremely simple situation when the cap
is a hemisphere, i.e., the contact angle is 90°.

Let us suppose that there are a number of dispersed par-
ticles inside the droplet. The particle concentration is large
enough to produce strong anchoring of the contact line, al-
though it is small enough to consider the fluid as ideal. So,
the radius of the contact base between the drop and the solid
plate remains constant during drying.

Under evaporation, the height in each point of the profile
decreases. Nevertheless, under room conditions, the evapo-
ration is a slow process. For instance, the desiccation time of
a 15 mg sessile water drop is larger than 3500 sf8g. This fact
gives us the possibility to consider a quasistatic process. We
will consider a drop with a fixed free surface and the specific
boundary conditions. Quasistatic approximation was utilized
in f3g to obtain a vapor rate near the free surface, too.

The conservation of fluid determines the relationship be-
tween the velocity of the free surfaceun, the normal to the
free surface flow of the fluidvn, and the rate of mass loss per
unit time per unit area of the free surface of the drop by
evaporationJ

rvn + J = run.

All quantities are supposed the function of the azimuthal
angle.sFor additional explanations, see Fig. 1.d

Let us consider only the potential flow. The potential of
the velocity fieldw is a solution of the Laplace’s equation

Dw = 0. s1d

The problem of a spherical cap on an impermeable substrate
can be replaced by the problem of a lens. Also, we will solve
the Laplace’s equation inside a spherical area using spherical
coordinates.

Measurements of the evolution of the drying drop height
h with time t can be performed. Let us suppose, that the
velocity of the drop apex,u0=uns0d, is known. The mass of
the drop is decreasing due to evaporation

E JdS= rdV= rpR2u0dt,

where the integration goes all over the free surface. Let us
suppose that the evaporation rate is uniform all over drop
free surface, i.e., we will consider only begin of the evapo-
ration. Thus,

J =
u0r

2
.

The equation of solute conservation yields

uvrur=R = U ]w

]r
U

r=R
= u0S1

2
− ucosuuD , s2d

where R is the radius of the contact base andvr =−vn. As
mentioned earlier, the problem of a drop is replaced by the
problem of a sphere. Presence of the absolute value signs
around cossud is a result of plane symmetry.

We are looking for the boundary value problems1d, s2d
inside a spherical areasr øRd as

wsr,ud = o
k=0

`

AkS r

R
Dk

Pkscosud, s3d

wherePkscosud are Legendre polynomials.
Thus,

]w

]r
= o

k=0

`

k
Ak

Rkrk−1Pkscosud. s4d

Let us write the right-hand side of Eq.s2d using Fourier-
Legendre series expansion also known as a generalized Fou-
rier series expansion

u0S1

2
− ucosuuD = o

k=0

`

bkPkscosud, s5d

where

bk =
2k + 1

2
u0E

0

p S1

2
− ucosuuDPkscosudsinudu.

Thus,b0=0, b2k+1=0,

b2k = u0s4k + 1d
s− 1dks2k − 2d!

22ksk − 1d!sk + 1d!
, k = 1,2, . . . .

Taking into account Eq.s2d, s4d equalss5d, if r =R

FIG. 1. The solid semicircle represents the initial air-liquid in-
terface of a drop viewed from the side. The dashed line represents a
new position of the interface after a very small timedt, if the con-
tact line is pinned. The new position of the interface is a result of
the evaporation with the rateJ and radial flow of the fluid with the
velocity vn inside the drop. The contact line motion is prevented by
an outflow that replenishes the liquid removed from the edge. The
drop height decreases with velocityu0. The volume between initial
and new interface position isdV=pR2u0dt.
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o
k=0

`

k
Ak

RkRk−1Pkscosud = o
k=0

`

bkPkscosud. s6d

Equations6d is always valid ifAk=bkR/k. Hence, the co-
efficients of the seriess3d are

A2k = u0Rs4k + 1d
s− 1dks2k − 2d!
22kk!sk + 1d!

, k = 1,2, . . . .

The capillary flow carries a fluid from the apex of the
drop to the contact linesFig. 2d.

III. DISCUSSION

The key to understanding the pattern formation and buck-
ling instability is the flow profile that is induced inside the
evaporating droplet. The velocity field for a hemispherical
dropletsFig. 2d looks almost the same as in the case of very
thin drop f4g. It means that the qualitative picture of the
capillary flow is insensitive to the ratioh0/R.

It is quite clear, that more realistic assumption, that a drop
has a spherical cap shape with an arbitrary contact angle,
cannot change the qualitative picture of the flow. In particu-
lar, the calculations of the vertically averaged velocity for the
drops with the contact angles up to 90°f1g did not show the
qualitative changes of the flow. If a drop has a spherical cap
shape with an arbitrary contact angle, then the Laplace’s

equation can be solved using toroidal coordinates. Although
the analytical results are too complicated in this case, nu-
merical calculations should be performed.

The nonuniform evaporation rate cannot change the re-
sults qualitatively, but the line, wherevrsRd=0, has to move.
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FIG. 2. Velocity vectors and streamlines for a desiccated sessile
hemispherical drop with pinned triple line. The evaporation rate is
uniform.
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